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The necessity for constructing in the space of parameters of a system the domain correspon-
ding to the disposition of the roots of the characteristic polynomial inside a unit circle
arises in many problems, including those relating to the stability of periodic motions of
strongly noplinear dynamic systems. The relationships between parameters which include
the boundaries of the domain of stable solutions can usually be found from the conditions

of nonfulfillment of a system of inequalities constructed in a certain way from the coeffi=
cients of the characteristic equation. An equation of degree n usually requires the investi-
gation of up to 2n “‘candidates’’ for the aforementioned boundaries [1t035].

In [6 and 7] the author proposes a method requiring the construction of just three “‘candi~
dates’” (N, N_, and N ) for the boundaries of the stability domain; the equations of these
“‘candidates’’ are obtained from the characteristic polynomial ¥ () = 0 by substitating into
it the values z=+ 1, z= ~ 1, and z = e! ®, respectively. In constructing N 4 it is neces-
sary to isolate the real and imaginary parts of Expression y(e ! 4) = 0 and to investigate
the corresponding stability boundary in parameteric form (0 K p £ 7). This can be difficult
in the case n » 3 {(see [8 to 11]). The relationship between the coefficients of )} (z) which
include the boundary N 4 constructed in [12] does not retain the advantages of the paramet-
ric form of definition, i.e. the conditions of isolation of the parasitic part and the shading
rule.

We propose to derive the equation for Ny in the fom of an explicit relationship among
the coefficients of the characteristic polynomial which retains the above advantages. We
shall also consider the structure of the parameter space in the neighborhood of certain
special configurations whose equations are more readily amenable to investigation than the
equations of N-surfaces. This enables us to simplify the construction of the stability do-~
main and to investigate (in certain cases) the dependence of stability on the parameters.

1. Let the characteristic equation
x(2)=a0s" + ay,z" P fota, s ap=0 (1.1)

for certain values of its real coefficients have two conjugate roots lying on a circle of unit
radius. In this case Eq. (1.1) must have as one of its factors the product

(z2— ) (2 =) =22+ pz $ 1

in which the real parameterp € (- 2, + 2). Hence, the values of the coefficients a satis-
fy the equation of N¢ if Eq.

oz 4 a1z by S G = (P F P2 F ) B P b 2 ) (1.2)

is fulfilled,
Equating terms with equal powers of 2 in (1.2} and successively eliminating the coeffi-

107



108 M.l Feigin

cients bp,..., by from the system, we arrive at the following parametric Eqs. for Ng:

Fo(p)=01+ asfi(p) ® a3}y (p) ¥ ... ¢ anfna1(p)=0 1.3)
@y (p) = ag P a1f1(p) + aafs (P) ¥ ... ¢ Gnfn(P) =0
By fxlp) (k = 1, 2,..., n) we denote polynomials of degree k in p,
fi=—p, fa=—1—ph, f=—h—>rh...lg=—Ina—pPlpy (14
In the case of two roots, ¢’ ¢ and e'w, we require fulfillment not ounly of (1.3), but also
of the following Eqs. which result from (1.3) upon the substitution of coefficients a5 + a,,,
ceer Gg = Gy yoeey By + Gg!
Fu* (p)=“n_l“}*an.gfl(l’)+"‘+"nfn..1(P)=0 (1.5)
Q0" (p)=a, + ap_1 f1 (P) +++++ 3o [, (P)=0
In order to obtain the equation for N in the form of an explicit relationship among the

coefficients a, , we eliminate p by successively reducing Eqgs. (1.3) and (1.5) with the aid
of the transformations

s —a Dot VP —a DR
Qj*l = ao @5 an__j 0,- s F5+1 = aa Fj an_j : Fj © N 6
® —alp” g F e oo hep, & =W U9
1 =8 £y — 8Ty, v =0y — Gy g Dy

After each transformation {1.6), systems (1.3) and (1.5) contain polynomials f,(p) lower
by one degree. The coefficients a, (/) here coincide exactly with the corresponding coeffi-
cients obtained in constructing the Schur inequalities {13 and 14]. After n — 2 reductions
(1.6) we arrive at Egs.

al("‘ﬂ) — pa’("‘ﬁ) =0, ao(ﬂ—2) — pal(ﬂ—ﬂ) +(pr—1) az(n‘?) =0 a
" — pa(" P =0, 3" — pa, D | (p* —1) 2™V =0 "
Eliminating p from (1.7), we obtain Eq. of N g,
2y B — 2" — 0, | a2 [ | < 2 (1.8)

The additional inequality | p| < 2 isolates on the surface a,""% = ao™"? the portion
which is the boundary Ny from the so-called parasitic part corresponding to the roots 2,2, =
= ] which do not lie on the unit circle.

According to Schur's rule, the necessary and sufficient conditions whereby all the roots
of polynomial (1.1) lie inside the unit circle are the inequalities

(1) (n—2) (n-1)
Gy ) . .
a' <i; aél) <1s crry “o(n_’) < i! ao(n—l) < 1

Hence, in constructing the boundaries of the stability domain it is sufficient to consider
the violation of the penaltimate condition of Schur’s inequality, when a? fa*? =+ 1
{this is associated with the appearance of the pair of complex conjugate roots e1®, o-19)
and the two relations Y (+ 1) = 0 and ) (~— 1) = 0 associated with the appearance of the roots
3=+ ] and a= -1,

Clearly, the stability domain can lie only on that side of Ny for which the penultimate
Schur inequality, i.e. a *2/a,"*2< 1, is fulfilled strictly.

The sbove inequality defines the shading rule.

In constructing the characteristic equation in the form of a determinant we can obtain
the penultimate Schur inequality without reducing the equation to polynomial form using the
formulas of [14).

For example, let us write out the equations of the surfaces N4, N. , aud Ny for a charac-
teristic third-degree polynomial (1.1),

a+a+a+a=0 —ag+a—ata=0

oy (8 — &) —ay(ag —8) =0, [(ag—ag}/ |2 (1.9)
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The side of Ny corresponding. to the entry of the roots e 19 into the unit circle is de=
fined by the inequality

aoGy — G310y
a0’ — ag}

Eqgs. of N4, N_, and N g for a fourth-degree polynomial are:
ggdadatatae=0 g—aPa—otas=0

<1 (4.10)

(1.11)
(ag — ) (89 + ag — a3) — (61 — Gg)(a481 — agay) = 0, | (a3 — a1) f(a,— ap)| < 2

The side of Ny corresponding to the entry of the roots e ¥1® into the unit circle is de-
fined by the inequality

as (ag® — ad) (80— au) — (a081 — asa4) (3023 — a184)
(a2* — ) — (ag8s — G184}

<1 (1.12)

2. The hypersurfaces N4, N_, and N4 divide the parameter space of the dynamic sys-
tem into domains D, , where the subscript k denotes the number of roots of the characteris-
tic polynomial inside the unit circle. The general method of solving the problem of D-decom=~
position with respect to the unit circle is described in [6 and 7). In constructing just the
stability domain D, there is no need to construct those portions of the N-surfaces which
are not its boundaries. In some cases the determination of the position of the stability do-
main and the investigation of the gualitative dependence of stability on the parameters are
facilitated substantially by a knowledge of the structure of the parameter space in the neigh=
borhood of multiple configurations whose equations are usually more amenable to analysis
than the equations of the N-surfaces.

We shall call the points of the parameter space of a dynamic system ‘‘parametric points’’.
By an s-tuple point we mean a point lying on the boundary between the domains D,..., Dy4,
the maximum difference between whose subscripts is s. Construction of the stability domain
can be conveniently begun with the detemination of the multiple points and the investiga~
tion of the values at these points of the remaining n — s roots of ¥y (z) = 0. If these roots
lie inside the unit circle or if s = n, then the stability domain lies in the neighborhood of an
s-tuple point. It must be noted that in considering D, in the parameter space of a dynamic
system the value of s depends substantially on the actual choice of variable parameters and
of the way in which the coefficients of the polynomial depend on these parameters. It is
clear that by suitable choice of one of the variable parameters (in passing from the consi-
deration of a multidimensional parameter space to the investigation of a one-dimensional
space) an s-tuple parametric point can be made a O-tuple point. For this reason the consider
ation of multiple s-configurations must be related to a specific dimensionality of the para
meter space.

Omitting proofs, let us formulate the characteristics of certain multiple points of the
dynamic system parameter space ji, A, V,... We shall assume that the fanction y(z, gz, A,ee)
is continuous and that it can be differentiated the required number of times with respect to
z and with respect to the parameters p1, A,...

1°. A parametric point of the surface N4 or N is singular in the one-dimensional
space g if at this point

(L PAS 1V (2.4)

The change in the parameter ;i associated with transition from the domain D into the
domain D, ,, satisfies the condition

(x;x;;' z)z-.:tl dp >0 (2.2)

2° A parametric point of the surface Ng is double in the one-dimensional space y if at

this point
Xz F0 Yo FO (2.3)
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The change in the parameter i associated with transition from the domain D, into the
domain D, 4, satisfies the inequality
(x[z |’ xp‘),zl-), dp>0 (2.4)
We note that computation of the derivative x‘,' can be avoided by determining which
side of Ny is associated with Dy, from the shading rule 8,("~? /a;(**? <1 or from a con-
sideration of y(z) in the neighborhood of a multiple point for a suitably chosen variable

parameter y (see Example 3.2),
3°. A parametric point belonging to the intersection of the surfaces Ny and N, is a

double peint in the plane g, A if at this point

| (X;n.i)u' (41
(Xp.')-p (xx')_l

The change in the parameters associated with transition to a domain with a larger num-
ber of roots inside the unit circle satisfies the condition

8 ()5 (X)) 3 >0 for A == const, )y F0 (2.6)

4° A parametric point of the surface N4 or N_. is double point in the parameter plane
iy A if at this point

(Xz')u +0, (x:')..1 0, 8= *0 (2.5)

xlk" xk.
sz," xﬂ\.

The surface Ny “begins’’ at the indicated points of the surface N4 or N_, Transitions
from these points into a domain with the largest number of roots inside the unit circle are
associated with fulfillment of the condition

(2% %zz" )4 IW <O for M=const, 3,0 (2.8)

5° A parametric point of intersection of the surfaces Ny and Ng(orN_and N $)isa
triple point in the plane ;1, A if the roots 2 = e¥!®and z = 1 (or 2 = — 1) are simple at this
point and if the intersecting surfaces do not come in contact either with the parameter
plane or with each other.

Here and below the analytic conditions for detemining the signs of the parameter chan-
ges which lead into the domain with the largest number of roots inside the unit circle will
not be given here becanse of the difficulty of their practical application. In these cases it
is more expedient to consider ) (2) on the N-surfaces or their intersections directly.

6° A point of the surface N4 or N_ is a triple point in the parameter space s, A, v if

at this point

+0 @7

x'=0, An"k0, A=

Xt =0, %" =0, Yzze" 0
x“i xl: i{ la \ Xx' x'l s xv’ xp':
Xew” X" A" X" | Xev Xzp”

3. Example 3.1. Letus construct the stability domain D, in the space of coeffi-
cients i, A, v of the third-degree characteristic polynomial (*)

2

+0 2.9)

X(mAv)=2dpt$izs4v=0 (3.1)
The equations of the surfaces N4, N, and Ny can be written in sccordance with (1.9)
as
1opdrev=0, —1dp—=APv=0 K3.2)
f=viv—p4+r—1=0, p—v[<2

Since one of the determinamts of (2.9), i.e.

*) A construction of Dy with the aid of the Horwitz criterion will be found in [1.
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X' x,
x:p. sz
is different from zero, the stability domain D, lies in the neighborhoed of the triple points
of the surfaces Ny and N __ corresponding to the tnple rootz =1 and z= 1, The coordin-
ates of these points can be found from Eqs. ¥ = 0 ¥, = 0 and ¥ 57 = 0. These coordinates
tarn out to be i = — 3, A= 3, v = — 1 (the point M,) for Ny and st = 3, A= 3, v = 1 (the point

My)for N_.
The change in the parameter A= 3 + d A in the neighborhood of the above points which

leads into D5 can be determined from the variation of the third root along the lines y = 0
and ¥,/ = 0 comesponding to the double root 2 =1 and z = — 1. Egs. of these lines are

A-+3 1—2 A3 '2. —14
p=——m—, v=—3 (), p=Tp. V=
f A—1 A—1
G—tp(s—25) =0, +0r(i+-g)
This implies that the domain D; is associated with dA < 0,
The sign of the change in the parameter y associated with entry into D, can be found
from condition (2.8)) by considering the neighborhood of the points I'y andI_ for A= 3+

+ d A and v = const, since x; = 1# 0. In the neighborhood of the point [y we have = — 3 ~
— dA/?2, and condition (2.8),

(Azgy'yz.") dp = — 222 (6z 4 2) dp < O

is fulfilled for diu > O. In the neighborhood of the point ' (u= 3+ dA/2) it is fulfilled for
dpu < 0. Thus, the domain D, lies in the neighborhood of the point M, for du> 0, dA <0,
and in the neighborhood of the point ¥, for du <0, dA <0 (Fig. 1a and b).

H
] wlt ¢
M, ¢
N N

N,
X >@L
X, ¥,
N‘P £ 4 | "N, ¥

= —2z

.

(T)

Characteristic polynomial (3.1) on these lines can be written as

f
Lo

N
a) A=3 b) A=2 ¢) A=t

Fig. 1

As the parameter A decreases, the plane-section domain D ; becomes simply connected
upon the appearance of a double point of the node type on the boundary N¢ (3.2) (Flg. lc)
The coordinates of the double point ¥, can be found from Eqs. f= 0, f“ =0, and f),= 0.
They turn out to be u =0, A= 1, v = O. With further decreases in A the plane section of the
stability domain contracts and vanishes at the triple points of intersection of the surfaces
NesN_,andNg:Mylp=1,A=-1,v=-1}, Mglu=—1,A=~1,v=1], ie. in the
cross section A= ~ 1 (Fig. 1d and e).

The segments of Ny, N_, and Ny which are not boundaries of D, appear in Fig. 1 in or-
der better to illustrate the qualitative dependence of the stability domain on the parameters.
The broken curves in Fig. 1d represent the relationships between 1 and v obtained in cons-
tructing the stability domain from the conditions of violation of Schur’s conditions. Some of
these curves have a singular point belonging to the boundary of D .

Example 3.2. The following characteristic equation was obtained in an investiga-
tion [8] of the stability of motion of an impact damper in symmetrical operation at the reso-
nance frequency with two impacts per period:
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-2 P RR—224 ) s* ¢ (A —2Rg)s P R*=0

20 (4 + RP o (14 R)(1—p)
= (—dtgg)e =ttt ®.3)

Here R is the factor of velocity restitution after impact (0 <R < 1); i is the relative
mass of the damper (£ > 0); d is the relative gap between the colliding masses {(d > 0).

In accordance with (1.11) we can write the equations of the N-surfaces in the space of
the parameters i, R, and d, i.e.

p=20 3.4
for Vs
n 1
=t m (3.5)
forN..
R= (3.8)
K 1-Hl f—p
d=1+3-+— (1+R) ' Ii—{-p.i<" 3.7)
forN¢

In order to detemmine the position of the stability domeain D, in the parameter space we
consider the neighborhood of intersection of the double surface N¢, {3.6) and {3.7),

R=1, d=14m/8 (3.8)

and investigate the behavior of (3.3) along some parametric trajectory y = const, d = const
passing through line (3.8). Since the qualitative picture of disposition of the domains D,
in the neighborhood of {3.8) does not depend on i in the interval 0 < g <oe, let us take for
simplicity y= 1,d = 1+ 74 . Eq. {3.3) can then be written as

(s + R =
Hence, the domain D, contains the segment
p=1, d=1$Ym: RH{
of the chosen parametric trajectory, and the entire stability domain is isolated in the para-
meter space by the inequalities

1 o 1pp/1—R\
ISR, p>0, —gr<d—ti—g T(@'ﬁ’)
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