CONSTRUCTING THE STABILITY DOMAIN IN THE PARAMETER SPACE OF A DYNAMIC SYSTEM

PMM Vol. 32, No. 1, 1968, pp. $118-123$

M.I. FEIGIN
(Gor'kil)

(Received June 5, 1967)

The necessity for constructing in the space of parameters of a system the dornain corresponding to the disposition of the roots of the characteristic polynomial inside a unit circle arises in many problems, including those relating to the stability of periodic motions of strongly nonlinear dynamic systems. The relationships between parameters which include the boundaries of the domain of stable solutions can usually be found from the conditions of nonfulfillment of a system of inequalities constructed in a certain way from the coefficients of the characteristic equation. An equation of degree n usually requires the investigation of up to $2 n$ "candidates" for the aforementioned boundaries [ll to 5].

In [6 and 7] the author proposes a method requiring the conatruction of just three "candidates" $\left(N_{+}, N_{-}\right.$, and N_{ϕ}) for the boundaries of the stability domain; the equations of these "candidates" are obtained from the characteristic polynomial $\chi(z)=0$ by subatituting into it the values $z=+1, z=-1$, and $z=e^{i \phi}$, respectively. In constructing N_{ϕ} it is necessary to isolate the real and imaginary parts of Expression $\chi\left(e^{i \phi}\right)=0$ and to investigate the corresponding stability boundary in parameteric form $(0 \leqslant \phi \leqslant \pi)$. This can be difficult in the case $n \geqslant 3$ (see [8 to 11]). The relationship between the coefficients of $\chi(z)$ which include the boundary N_{ϕ} constructed in [12] does not retain the advantages of the parametric form of definition, i.e. the conditions of isolation of the parasitic part and the shading rule.

We propose to derive the equation for N_{ϕ} in the form of an explicit relationship among the coefficients of the characteristic polynomial which retains the above advantages. We shall also consider the structure of the parameter space in the neighborhood of certain special configurations whose equations are more readily amenable to investigation than the equations of N-surfaces. This enables us to simplify the construction of the stability domain and to investigate (in certain cases) the dependence of stability on the parameters.

1. Let the characteristic equation

$$
\begin{equation*}
\chi(z)=a_{0} z^{n}+a_{1}, z^{n-1}+\cdots+a_{n-1} z+a_{n}=0 \tag{1.1}
\end{equation*}
$$

for certain values of its real coefficients have two conjugate roots lying on a circle of unit radius. In this case Eq. (1.1) must have as one of its factors the product

$$
\left(z-e^{i \varphi}\right)\left(z-e^{-i \varphi}\right)=z^{2}+p z \nrightarrow 1
$$

in which the real parameter $p \in(-2,+2)$. Hence, the values of the coefficiente a_{k} satiofy the equation of N_{ϕ} if Eq.

$$
\begin{equation*}
a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}=\left(z^{2}+p z+1\right)\left(b_{2} z^{n-2}+\cdots+b_{n-1} z+b_{n}\right) \tag{1.2}
\end{equation*}
$$

is fulfilled.
Equating terms with equal powers of x in (1.2) and successively eliminating the coeffi-
ciente b_{n}, \ldots, b_{2} from the system, we arrive at the following parametric Eqs. for N_{ϕ} :

$$
\begin{align*}
& F_{0}(p)=a_{1}+a_{3} f_{1}(p)+a_{3} f_{2}(p)+\ldots+a_{n} f_{n-1}(p)=0 \tag{1.3}\\
& \Phi_{0}(p)=a_{0}+a_{1} f_{1}(p)+a_{2} f_{2}(p)+\ldots \leftrightarrow a_{n} f_{n}(p)=0
\end{align*}
$$

By $f_{k}(p)(k=1,2, \ldots, n)$ we denote polynomials of degree k in p,

$$
\begin{equation*}
f_{1}=-p, \quad f_{2}=-1-p f_{1}, \quad f_{3}=-f_{1}-p f_{3}, \ldots, f_{n}=-f_{n-1}-p f_{n-1} \tag{1.4}
\end{equation*}
$$

In the case of two roots, $e^{i \phi}$ and $e^{-1 \phi}$, we require fulfillment not only of (1.3), but alao of the following Eqs. which result from (1.3) upon the subatitution of coefficients $a_{0} \rightarrow a_{n}$, $\ldots, a_{k} \rightarrow a_{n-k}, \ldots, a_{n} \rightarrow a_{0}:$

$$
\begin{gather*}
F_{0}^{*}(p)=a_{n-1}+a_{n-2} f_{1}(p)+\cdots+a_{0} f_{n-1}(p)=0 \tag{1.5}\\
\Phi_{0}(p)=a_{n}+a_{n-1} f_{1}(p)+\cdots+a_{0} f_{n}(p)=0
\end{gather*}
$$

In order to obtain the equation for N_{ϕ} in the form of an explicit relationship among the coefficients a_{k}, we eliminate p by successively reducing Eqs. (1.3) and (1.5) with the aid of the transformations

$$
\begin{array}{ll}
\Phi_{j+1}=a_{0}^{(j)} \Phi_{j}-a_{n-j}{ }^{(j)} \Phi_{j}^{*}, & F_{j+1}=a_{0}^{(j)} F_{j}-a_{n-j}{ }^{(i)} F_{j}^{*} \tag{1.6}\\
\Phi_{j+1}^{*}=a_{0}^{(j)} F_{j}{ }^{*}-a_{n-j}{ }^{(j)} F_{j}, & F_{j+1}{ }^{*}=a_{0}^{(j)} \Phi_{j}^{*}-a_{n-j}^{(j)} \Phi_{j}
\end{array} \quad\left(a_{k}^{(0)}=a_{k}\right)
$$

After ench transformation (1.6), systems (1.3) and (1.5) contain polynomials $f_{k}(p)$ lower by one degree. The coefficients $a_{k}{ }^{(1)}$ here coincide exactly with the corresponding coefficients obtained in constructing the Schur inequalities [13 and 14]. After $n-2$ reductions (1.6) we arrive at Eqs.

$$
\begin{array}{ll}
a_{1}^{(n-2)}-p a_{9}^{(n-2)}=0, & a_{0}^{(n-2)}-p a_{1}^{(n-2)}+\left(p^{2}-1\right) a_{9}^{(n-2)}=0 \\
a_{1}^{(n-2)}-p a_{0}^{(n-2)}=0, & a_{9}^{(n-2)}-p a_{1}^{(n-2)}+\left(p^{3}-1\right) a_{0}^{(n-8)}=0 \tag{1.7}
\end{array}
$$

Eliminating P from (1.7), we obtain Eq. of N_{ϕ},

$$
\begin{equation*}
a_{8}^{(n-2)}-a_{0}^{(n-2)}=0, \quad\left|a_{1}^{(n-2)} / a_{0}^{(n-2)}\right| \leqslant 2 \tag{1.8}
\end{equation*}
$$

The additional inequality $|p| \leqslant 2$ isolates on the surface $a_{2}{ }^{(n-2)}=a_{0}{ }^{(n-2)}$ the portion which is the boundary N_{ϕ} from the so-called parasitic part corresponding to the roote $z_{1} z_{2}=$ $=1$ which do not lie on the unit circle.

According to Schur's rule, the necessary and sufficient conditions whereby all the roots of polynomial (1.1) lie inside the unit circle are the inequalities

$$
\left|\frac{a_{n}}{a_{0}}\right|<1, \quad\left|\frac{a_{n-1}^{(1)}}{a_{0}^{(1)}}\right|<1, \ldots,\left|\frac{a_{2}^{(n-2)}}{a_{0}^{(n-2)}}\right|<1, \quad\left|\frac{a_{1}^{(n-1)}}{a_{0}^{(n-1)}}\right|<1
$$

Hence, in conatructing the boundaries of the stability domain it is sufficient to consider the violation of the penaltimate condition of Schur's inequality, when $a_{2}^{n-2} / a_{0}^{n-2}=+1$ (this is associated with the appearance of the pair of complex conjugate roots $e^{1 \phi}, e^{-1 \phi}$) and the two relations $\chi^{(+1)=0}$ and $X(-1)=0$ associated with the appearance of the roots $x=+1$ and $x=-1$.

Clearly, the atability domain can lie only on that side of N_{ϕ} for which the penultimate Schur inequality, i.e. $a_{2}{ }^{\boldsymbol{n - 2}} / a_{0}{ }^{\boldsymbol{n - 2}}<1$, in fulfilled strictly.

The above in equality defines the shading rule.
In constructing the characteristic equation in the form of a determinant we can obtain the penulimate Schur inequality withont reducing the equation to polynomial form uaing the formulas of [14].

For exmple, lat ue write out the equations of the aurfaces N_{+}, N_{-}, and N_{ϕ} for a characteristic third-degree polynomial (1.1),

$$
\begin{gather*}
a_{0}+a_{1}+a_{3}+a_{3}=0,-a_{0}+a_{1}-a_{2}+a_{3}=0 \\
a_{3}\left(a_{3}-a_{2}\right)-a_{0}\left(a_{0}-a_{4}\right)=0, \quad\left|\left(a_{n}-a_{0}\right) / a_{3}\right|<2 \tag{1.8}
\end{gather*}
$$

The side of N_{ϕ} corresponding. to the entry of the roots $e^{ \pm t \phi}$ into the unit circle is dofined by the inequality

$$
\begin{equation*}
\frac{a_{0} a_{3}-a_{1} a_{3}}{a_{0}^{2}-a_{3}^{2}}<1 \tag{1.10}
\end{equation*}
$$

Eqs. of N_{+}, N_{\rightarrow} and N_{ϕ} for a fourth-degree polynomial are:

$$
\begin{gather*}
a_{0}+a_{1}+a_{2}+a_{3}+a_{4}=0, \quad a_{0}-a_{1}+a_{2}-a_{3}+a_{4}=0 \tag{1.11}\\
\left(a_{0}-a_{4}\right)^{2}\left(a_{0}+a_{4}-a_{2}\right)-\left(a_{1}-a_{3}\right)\left(a_{4} a_{1}-a_{0} a_{8}\right)=0, \quad\left|\left(a_{3}-a_{1}\right) /\left(a_{4}-a_{0}\right)\right| \leqslant 2^{(}
\end{gather*}
$$

The side of N_{ϕ} corresponding to the entry of the roots $e^{ \pm t \phi}$ into the unit circle is defined by the inequality

$$
\begin{equation*}
\frac{a_{4}\left(a_{0}^{2}-a_{4}^{2}\right)\left(a_{0}-a_{4}\right)-\left(a_{0} a_{1}-a_{8} a_{4}\right)\left(a_{0} a_{8}-a_{1} a_{4}\right)}{\left(a_{3}^{2}-a_{6}\right)^{2}-\left(a_{0} a_{3}-a_{1} a_{4}\right)^{2}}<1 \tag{1.12}
\end{equation*}
$$

2. The hypersurfaces N_{+}, N_{-}, and N_{ϕ} divide the parameter space of the dynamic syatem into domains D_{k}, where the subscript k denotes the number of roots of the characterigtic polynomial inside the unit circle. The general method of solving the problem of D-decomposition with respect to the unit circle is described in [6 and 7]. In constructing just the stability domain D_{n} there is no need to construct those portions of the N-surfaces which are not its boundaries. In some cases the deternination of the position of the stability domain and the investigation of the qualitative dependence of stability on the parameters are facilitated substantially by a knowledge of the structure of the parameter space in the neighborhood of multiple configurations whose equations are usually more amenable to analysis than the equations of the N-surfaces.

We shall call the points of the parameter space of a dynamic system "parametric pointa". By an s-tuple point we mean a point lying on the boundary between the domaina D_{k}, \ldots, D_{k+n} the maximum difference between whose subscripts is s. Construction of the stability domain can be conveniently begun with the determination of the multiple points and the investigation of the values at these points of the remaining $n-s$ roots of $X(z)=0$. If these roots lie inside the unit circle or if $s=n$, then the stability domain lies in the neighborhood of an s-tuple point. It must be noted that in considering D_{k} in the parameter space of a dynamic system the value of s depends aubstantially on the actual choice of variable parametore and of the way in which the coefficients of the polynomial depend on these parameters. It is clear that by suitable choice of one of the variable parameters (in passing from the conaideration of a multidimensional parameter apace to the investigation of a one-dimensional space) an s-tuple parametric point can be made a 0 -tuple point. For this reason the consideration of multiple s-configurations must be related to a specific dimensionality of the parsmeter space.

Omitting proofs, let us formulate the characteristics of certain multiple points of the dynamic system parameter space $\mu, \lambda, \nu, \ldots$ We shall assume that the function $\chi(x, \mu, \lambda, \ldots)$ is continuous and that it can be differentiated the required number of times with respect to z and with respect to the parameters μ, λ, \ldots
1°. A parametric point of the surface N_{+}or $N_{\text {_ }}$ is singular in the one-dimensional space μ if at this point

$$
\begin{equation*}
x_{2}^{\prime} \neq 0, \quad x_{\mu}^{\prime} \neq 0 \tag{2.1}
\end{equation*}
$$

The change in the parameter μ essociated with transition from the domain D_{k} into the domain D_{k+1} satisfies the condition

$$
\begin{equation*}
\left(\chi_{z}^{\prime} \chi_{\mu}^{\prime} z\right)_{z= \pm \pm 1} d \mu \gg_{2} 0 \tag{2.2}
\end{equation*}
$$

2°. A parametric point of the aurface N_{ϕ} is double in the one-dimensional apace μ if at this point

$$
\begin{equation*}
x_{1 z 1}^{\prime} \neq 0, \quad x_{\mu}^{\prime} \neq 0 \tag{2.3}
\end{equation*}
$$

The change in the parameter μ associated with transition from the domain D_{k} into the domain D_{k+1} eatisfies the inequality

$$
\begin{equation*}
\left(\left.x_{\mid z}\right|^{\prime} x_{\mu}\right)_{|z|=1} d \mu>0 \tag{2.4}
\end{equation*}
$$

We note that computation of the derivative $X_{|z|}$ can be avoided by determining which side of N_{ϕ} is associated with D_{k+2} from the shading rule $a_{2}{ }^{(n-2)} / a_{0}{ }^{(n-2)}<1$ or from a consideration of $\chi(z)$ in the neighborhood of a multiple point for a suitably chosen variable parameter μ (see Example 3.2).
3°. A parametric point belonging to the intersection of the surfaces N_{+}and N_{-1} is a double point in the plane μ, λ if at this point

$$
\left(x_{2}\right)_{+1} \neq 0, \quad\left(x_{z}\right)_{-1} \neq 0, \quad 8=\left|\begin{array}{ll}
\left(x_{\mu}{ }^{\prime}\right)_{+1}, & \left(x_{\lambda}{ }^{\prime}\right)_{+1} \tag{2.5}\\
\left(x_{\mu}\right)_{-1}, & \left(x_{\lambda}\right)_{-1}
\end{array}\right| \neq 0
$$

The change in the parameters associated with transition to a domain with a larger number of roots inside the unit circle satisfies the condition

$$
\begin{equation*}
\delta\left(\chi_{\lambda}^{\prime}\right)_{+1}\left(\chi_{z}^{\prime}\right)_{-1} d \mu>0 \quad \text { for } \lambda=\text { const, } \quad\left(\chi_{\lambda}^{\prime}\right)_{+1} \neq 0 \tag{2.6}
\end{equation*}
$$

4°. A parametric point of the surface N_{+}or N_{-}is double point in the parameter plane μ, λ if at this point

$$
\chi_{2}^{\prime}=0, \quad \chi_{z z}{ }^{\prime \prime} \neq 0, \quad \Delta=\left|\begin{array}{c}
\chi_{\mu^{\prime}}{ }^{\prime}, \chi_{\lambda}{ }^{\prime} \tag{2.7}\\
\chi_{z \mu}{ }^{\prime \prime}, \chi_{z \lambda^{\prime}}
\end{array}\right| \neq 0
$$

The surface N_{ϕ} "begins" at the indicated points of the surface N_{+}or N_{-}. Transitions from these pointe into a domain with the largest number of roots inside the anit circle are associated with fulfillment of the condition

$$
\begin{equation*}
\left(z \Delta x_{\lambda}^{\prime} \chi_{z z} z_{-}^{\prime \prime}\right)_{ \pm 1} d \mu<0 \quad \text { for } \quad \lambda_{i}^{\prime \prime}=\text { const, } \quad \chi_{\lambda}^{\prime} \not \neq 0 \tag{2.8}
\end{equation*}
$$

5°. A parametric point of intersection of the surfaces N_{+}and N_{ϕ} (or N_{-}and N_{ϕ}) is a triple point in the plane μ, λ if the roots $z=e^{ \pm 1 \phi}$ and $z=1$ (or $z=-1$) are simple at this point and if the intersecting surfaces do not come in contact either with the parameter plane or with each other.

Here and below the analytic conditions for detemining the signs of the parameter changes which lead into the domain with the largest number of roots inside the anit circle will not be given here becanse of the difficulty of their practical application. In these cases it is more expediont to consider $\chi(x)$ on the N-surfaces or their intersections directly.
6°. A point of the surface N_{+}or N_{-}is a triple point in the parameter space μ, λ, ν if at this point

$$
\begin{align*}
& \chi_{z}{ }^{\prime}=0, \quad \chi_{z z^{\prime \prime}}={ }^{\prime \prime} 0, \quad \chi_{z z z^{\prime \prime}} \neq 0 \\
& \left|\begin{array}{ll}
x_{\mu}{ }^{\prime} & x_{\lambda}{ }^{\prime}{ }^{\prime \prime} \\
x_{z \mu}{ }^{\prime \prime} & x_{z \lambda}{ }^{\prime \prime}
\end{array}\right|^{2}+\left|\begin{array}{ll}
x_{\lambda}{ }^{\prime} & x_{v}{ }^{\prime} \\
x_{z \lambda}{ }^{\prime \prime} & x_{z v}{ }^{\prime \prime}
\end{array}\right|^{2}+\left|\begin{array}{ll}
x_{v}{ }^{\prime} & x_{\mu}{ }^{\prime} \\
x_{z v}{ }^{\prime \prime} & x_{z \mu}{ }^{\prime \prime}
\end{array}\right|^{2} \neq 0 \tag{2.8}
\end{align*}
$$

3. Example 3.1. Let ue construct the stability domain D_{3} in the space of coefficients μ, λ, ν of the thirdedegree characteriatic polynomial (*)

$$
\begin{equation*}
\chi(z, \mu, \lambda, \nu)=z^{2}+\mu z^{2}+\lambda z+\nu=0 \tag{3.1}
\end{equation*}
$$

The equations of the aurfaces N_{+}, N_{\ldots}, and N_{ϕ} can be written in accordance with (1.9) :

$$
\begin{align*}
& 1 * \mu \nLeftarrow \lambda \nLeftarrow \nu=0, \quad-1 \nLeftarrow \mu-\lambda \leftrightarrow \nu=0 \tag{3.2}\\
& t=\nu(v-\mu)+\lambda-1=0, \quad|\mu-v| \leqslant 2
\end{align*}
$$

Since one of the determin mate of (2.9), i.e.
*) A construction of D_{3} with the aid of the Harwitz criterion will be found in [1].

$$
\Delta=\left|\begin{array}{cc}
x_{p}^{\prime} & x_{y}^{\prime} \\
x_{z \mu}^{\prime \prime} & x_{z v}^{\prime \prime}
\end{array}\right|=-2 z
$$

is different from zero, the stability domain D_{3} lies in the neighborhood of the triple points of the surfaces N_{+}and N_{-}corresponding to the triple root $z=1$ and $z=-1$. The coordinates of these points can be found from Eqs. $\chi=0 \chi_{x}^{\prime}=0$ and $X_{n=3}^{\prime \prime}=0$. These coordinates turn out to be $\mu=-3, \lambda=3, \nu=-1$ (the point M_{1}) for N_{+}and $\mu=3, \lambda=3, \nu=1$ (the point M_{2}) for N_{-}.

The change in the parameter $\lambda=3+d \lambda$ in the neighborhood of the above points which leads into D_{3} can be determined from the variation of the third root along the lines $X=0$ and $\chi_{z}^{\prime}=0$ corresponding to the double root $z=1$ and $z=-1$. Eqs. of these lines are

$$
\mu=-\frac{\lambda+3}{2}, \quad v=\frac{1-\lambda}{2}\left(\Gamma_{+}\right), \quad \mu=\frac{\lambda+3}{2}, \quad v=\frac{1 \lambda-1}{2}\left(\Gamma_{-}\right)
$$

Characteristic polynomial (3.1) on these lines can be written as

$$
(z-1)^{2}\left(z-\frac{\lambda-1}{2}\right)=0 . \quad(z+1)^{2}\left(z+\frac{\lambda-1}{2}\right)=0
$$

This implies that the domain D_{3} is associated with $d \lambda<0$.
The sign of the change in the parameter μ associated with entry into D_{3} can be found from condition (2.8)) by considering the neighborhood of the points Γ_{+}and Γ_{-}for $\lambda=3+$ $+d \lambda$ and $\nu=$ const, since $\chi_{z}^{\prime}=1 \neq 0$. In the neighborhood of the point Γ_{+}we have $\mu=-3-$ $-d \lambda / 2$, and condition (2.8),

$$
\left(\Delta z \chi_{v}{ }^{\prime} \chi_{z z}{ }^{\prime \prime}\right) d \mu=-2 z^{\dot{i}}(6 z+2 \mu) d \mu<0
$$

is fulfilled for $d \mu>0$. In the neighborhood of the point $\Gamma_{-}(\mu=3+d \lambda / 2)$ it is fulfilled for $d \mu<0$. Thus, the domain D_{3} lies in the neighborhood of the point M_{1} for $d \mu>0, d \lambda<0$, and in the neighborhood of the point M_{2} for $d \mu<0, d \lambda<0$ (Fig. $1 a$ and b).

Fig. 1
As the parameter λ decreases, the plane-section domain D_{3} becomes simply connected upon the appearance of a double point of the node type on the boundary N_{ϕ} (3.2) (Fig. 1c). The coordinates of the doable point M_{3} can be found from Eqs. $f=0, f_{\mu}^{\prime}=0$, and $f_{i}^{\prime}=0$. They turn out to be $\mu=0, \lambda=1, \nu=0$. With further decreases in λ the plane section of the stability domain contracts and vanishes at the triple points of intersection of the surfaces N_{+}, N_{-}, and $N_{\phi}: M_{4}\{\mu=1, \lambda=-1, \nu=-1\}, M_{5}\{\mu=-1, \lambda=-1, \nu=1\}$, i,e. in the cross section $\lambda=-1$ (Fig. $1 d$ and e).

The segments of N_{+}, N_{-}, and N_{ϕ} which are not boundaries of D_{3} appear in Fig. 1 in order better to illustrate the qualitative dependence of the stability domain on the parameters. The broken curves in Fig. $1 d$ represent the relationships between μ and ν obtained in constructing the stability domain from the conditions of violation of Schur's conditions. Some of these curves have a singular point belonging to the boundary of D_{3}.

Example 3.2. The following characteristic equation was obtained in an investigation [8] of the stability of motion of an impact damper in symmetrical operation at the resonance frequency with two impacts per period:

$$
\begin{gather*}
t^{4}+(h-2 g)+\left(2 R-2 h+g^{2}\right) x^{2}+(h-2 R g)+R^{4}=0 \\
h=\frac{2 \mu(1+R)^{2}}{(1+\mu)^{2}}\left(1-d+\frac{\pi^{4}}{8 \mu}\right), \quad g=\frac{(1+R)(1-\mu)}{1+\mu} \tag{3.3}
\end{gather*}
$$

Here R is the factor of velocity restitution after impact ($0<R<1$); μ is the relative mass of the damper ($\mu>0$); d is the relative gap between the colliding masases ($d>0$).

In accordance with (1.11) we can write the equations of the $N a s u r f a c e s$ in the apace of the perametera μ, R, and d, i.e.

$$
\begin{equation*}
\mu=0 \tag{3.4}
\end{equation*}
$$

for N_{+}

$$
\begin{equation*}
d=1+\frac{\pi^{2}}{8 \mu}-\frac{1}{2 \mu} \tag{3.5}
\end{equation*}
$$

for N_{-}

$$
\begin{gather*}
R=1 \tag{3.6}\\
d=1+\frac{\pi^{2}}{8 \pi}+\frac{1+\mu}{2 \mu}\left(\frac{1-R}{1+R}\right)^{2}, \quad\left|\frac{1-\mu}{1+\mu}\right|<1 \tag{3.7}
\end{gather*}
$$

for N_{ϕ}
In order to detemine the position of the stability domain D_{4} in the parameter space we consider the neighbonood of intersection of the donble aurface $N_{\phi}(3.6)$ and (3.7),

$$
\begin{equation*}
R=1, \quad d=1 \notin \pi^{2} / 8 \mu \tag{3.8}
\end{equation*}
$$

and investigate the behavior of (3.3) along some parametric trajectory $\mu=\operatorname{con} s t, d=$ const passing through line (3.8). Since the qualitative picture of disposition of the domains D_{k} in the neighborhood of (3.8) does not depend on μ in the interval $0<\mu<\infty$, let us take for simplicity $\mu=1, d=1+\pi /$. Eq. (3.3) can then be written as

$$
\left(z^{2}+R\right)^{z}=0
$$

Hence, the domain D_{4} contains the segment

$$
\mu=1, \quad d=1+1 / 8 \pi^{2}, \quad R<1
$$

of the chosen parametric trajectory, and the entire stability domain is isolated in the parameter space by the inequalities

$$
0<R<1, \quad \mu>0, \quad-\frac{1}{2 \mu}<d-1-\frac{\pi^{2}}{8 \mu}<\frac{1+\mu}{2 \mu}\left(\frac{1-R}{1+R}\right)^{2}
$$

BIBLIOGRAPHY

1. Ikonnikov, E.A. and Bautin, N.N., Investigating the roote of algebraic equations by a geometric method. Tr. Gor'kovak. inst. Inzh. Vod. Transp. Vol. 3, 1936.
2. Oldenburg, R. and Sartorius, G., The Dynamics of Automatic Control, Gosenergoizdat, Moncow-Leningrad, 1949.
3. Kobrinakil, A.E., Mechanisms With Elastic Constraints, "Nauke", Moscow, 1964.
4. Kuphal, K., Ober die Beelnflüseang von Sch wingangen durch einen Stosekörper. Z. Angew. Math. und Mech. Vol. 45, No. 2/3, 1965.
5. Maari, S.F. and Caughey, T.K., On the stablity of the impact damper. Trans. ASME, Ser. E, J. Appl. Mech. Vol. 33, No. 3, 1966.
6. Neimark, Iu. I., The Stability of Linearized Systems, LKVVIA, Leningrad, 1949.
7. Neimark, In. I., Periodic motione of relay ayateme, in the Collection of Paperm in Mem= ory of A.A. Andronov, Isd. Akad. Nauk SSSR, Moncow, 1955.
8. Feigin, M.I., On theory of nonlinemr dmpers (the impact danper and the dry friction demper). Iry. Vysch. Uch. Zav, Radiofizike Vol. 2, No. 4, 1959.
9. Feigin, M.I., On the theory of the impact damper. Izv. Vysah. Uch. Zav, Radiofizika Vol. 4, No. 3, 1961.
10. Gorothov; V.A., The effect of a vibrating soil mass on vibration pile driving. Izv. Vyssh. Uch. Zav. Radiofizika Vol. 5, No. 6, 1962.
11. Bespalova, L.V. and Metrikin, V.S., On the theory of the two-mass model of the vibre tion pile driver. Izv. Vyssh. Uch. Zav. Radiofizika Vol. 9, No. 2, 1966.
12. Bromberg, P.V., Stability and Autooscillations of Sampled Data Control Systems, Oborongix, Moscow, 1953.
13. Schur, I., Über Potenzriehen die im Innem des Einheitkreisea Beschränkt sind. J. reine und angew. Math. Vol. 148, 1918.
14. Arzhanykh, I.S., New stability inequalities. Avtomatike itelemekhanika Vol. 22, No. 4, 1961.
